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Abstract—The problem of heat transfer for laminar flow between two infinite horizontal parallel plates
with a coordinate system chosen at the middle plane such that the walls at y = +1 and x < 0 are held
at a constant temperature T, while the walls at y = +1 and x > 0 are held at a different constant
temperature T, is formulated to take into account the effect of radiation on the incoming fluid.
Temperature distributions for the regions x < 0 and x > 0 are obtained for mirror boundaries and black
boundaries. This has been achieved by obtaining solutions to the energy equation, including radiative
terms, coupled with the radiative transfer equation and by imposing continuity conditions on the
temperature and the radiative internal energy and their derivatives at the junction x = 0. A parameter
survey is made to study the thermal effects of optical thickness, nongrayness and Planck number (ratio
of conduction to black body radiation) on the nonscattering, absorbing, and emitting fluid. For mirror
boundaries, it is shown that axial radiation is negligible, even at low Peclet numbers, if radiation is
appreciable. In the case of black boundaries, axial radiation is negligible only when radiation effects are
small and the Peclet number is large.

NOMENCLATURE Ay 1/4(1/e—1/2);

specific heat; Ay (2n—Dm/2;

emissive power; 7, nongrayness parameter, = (op/og)’?;
Graetz number; T, optllcal thickness, = «,,L;

intensity; ha ratio of nongrayness to Planck number,
thermal conductivity; =n? '

half distance between plates; Hs absolute viscosity;

v, kinematic viscosity;
¢,, dimensionless radiative internal energy
Domain I = &,/de T —1;
¢,, dimensionless radiative internal energy
UL Domain II = &,/46 T4 —1;
Reynolds number, = — ; #:, dimensionless temperature
v Domainl = T,/T,—1;

Nusselt number;

Peclet number, = RePr;
Prandt! number, = uc/K,
heat flux;

temperature; 6,, dimensionless temperature
velocity; _ Domain Il = T,/T,,—~1;
maximum velocity; o 0*,  dimensionless temperature
coordinate in horizontal direction; (T—T)To—=T,),i=1,2.
coordinate in vertical direction;
coordinate perpendicular to paper; Subscripts
dimensionless coordinate, = x,/L; b black:
dimensionless coordinate, = y,/L; 0’ wall (;c <0);
Planck number, Domain I = K/L/4cT3; p, Planck:
Planck number, Domain II = K/L/4T2. r: Rosselz;nd;

w, wall (x > 0);

1, Domain I (x < 0);
Planck mean; 2, DomainlI (x > 0).
Rosseland mean;
mean absorptivity, = (agop)'/?; Superscripts
Stefan-Boltzmann constant; R radiation.
eigenvalues; ’
emissivity; INTRODUCTION

radiative internal energy; DURING the past decade, considerable attention was

*Work was done under the supervision of Professor V. S.

given to the problem of radiation effects on laminar

Arpaci of the Mechanical Engineering Department, Univer-  flow inside tubes and between parallei plates.. In reVive
sity of Michigan, Ann Arbor, Michigan. ing the literature, the intention was not to give a detail
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report on what has been done to date but rather to
give attention only to those contributions that are
directly related to the present work.

Viskanta [1] was among the first to consider the
effect of radiation on the well known Nusselt-Graetz
problem. Neglecting entrance effects due to both radi-
ation and conduction and considering Cartesian ge-
ometry, Viskanta used an iterative procedure to solve
the fully developed case. He considered the gray gas
with black boundaries and the entire range of optical
thickness. Assuming slug flow, Einstein [ 2, 3] extended
the Graetz problem to include radiation for a gray gas
and black boundaries for both parallel plates and
tubes. He assumed the inlet gas temperature to be
uniform and the gas absorptivity to be independent of
temperature. To account for variation of absorption
and emission in the gas, Einstein used distributed
energy sources. In each study the integro-differential
energy equation was replaced by a system of algebraic
equations by using a zonal method given by Hottel
and Cohen [4].

Assuming uniform inlet temperatures, Desoto [5]
studied the radiative Graetz problem considering a
nongray, nonisothermal gas with black boundaries in-
cluding entrance effects due to radiation and convec-
tion. His results included temperature distributions
compared with the Graetz problem with no radiation.
Desoto found that for CO, at about 2500°F radiation
caused a drastic effect on the gas temperature. Also,
the local heat flux at the wall of the tube was given.
His solution technique was iterative in nature. First he
would estimate the temperature distribution, calculate
the heat flux, and then compute the temperature from
the energy using finite difference approximations. A
new radiative flux distribution was then computed
along with a new temperature distribution. This pro-
cedure was iterated until an acceptable result was
obtained.

Using Laplace transforms and a numerical iterative
technique, Greif and McEligot [6] investigated the
effect of one-dimensional thin gas radiation on the
Cartesian Graetz problem with black boundaries. They
were able to show the effect of the conduction to
radiation parameter. Nt, on the local heat transfer at
the wall. The transverse temperature distribution was
given also as a function of this parameter. They found
that for relatively small values of N, the temperature
gradient at the wall approached zero which caused the
local heat flux at the wall, due to conduction, to
approach zero.

The foregoing literature survey reveals that the effect
of radiation on the general Graetz problem, parallel
plates and tubes, has been treated in several aspects.
However, none of the above investigators considered
both ¢¥ g® and radiant heat penetration out of the
usual defined single domain. The aim of the present
investigation is to consider both the terms ¢® and gF
along with a two domain problem. These effects to-
gether with mirror and black boundaries, Planck

+This parameter is defined by Sparrow and Cess [ 7] p. 258.

number (ratio of conduction to black body radiation)i
and the entire range of optical thickness are examined
using the approximate differential technique which is
considered next.
FORMULATION

Considering a radiating fluid flowing in plane
poiseuille flow from left to right between infinite parallel
plates as shown in Fig. 1. These plates have a tem-
perature T to the left of the origin and a temperature
Tw to the right of it.

7o Tw
S
To Tw

FiG. 1. Laminar flow between parallel plates.

The major consideration in formulating this problem
is to investigate the contribution of axial heat transfer
by radiation. In order to investigate axial radiation it
is necessary to consider a two domain problem and
include the term gX in both the energy and transfer
equations, This 1s accomplished by formulating the
problem for both domains and using the natural
boundary conditions of equality of temperature and
temperature gradient at the interface.

It is a well known fact that an exact treatment of
radiative transfer in a fluid leads to a formulation in
terms of integro-differential equations. Approximate
theories have been developed which permit a formu-
lation including only differential equations. As ex-
plained by Sparrow and Cess [7], there are a number
of ways these differential equations may be obtained.
One way involves satisfying certain moments of the
equations of transfer, while another proceeds by ex-
panding the intensity I in a series of spherical har-
monics. Using the moment method, Arpaci and Gozum
[ 8] obtained a differential form of the transfer equation
including both the terms ¢ and ¢X. They also formu-
lated boundary conditions that included the color of
boundaries and a weighted non-grayness of the gas. In
the present work, this formulation is employed.

The usual assumptions of constant fluid properties,
negligible viscous dissipation and negligible radiative
contributions to momentum are employed. The differ-
ential approximation to radiation employing the
Planck and Rosseland means in the form of (xpag)'/?
satisfies both the thin and thick gas limits and the
trendwise behavior between these extremes is quali-
tatively accurate.§ However, this approximation con-
sistently predicts lower gas temperatures between these
limits. Therefore, care must be taken in applying this
approximation to gases such as CO, CO,, H,O0, SO,,

1 This parameter is discussed later in the text.
§For further discussion, specific examples and details see
references [8--14].
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the hydrocarbons and the high temperature oxygen,
nitrogen, and hydrogen plasmas.

With the above assumptions and relating black body
radiation to temperature (E, = oT*) the formulation
of the problem in dimensionless form may be stated as:

2 2
Pe(l—,vz)-a.&= 0049 62 + xit(¢:—40;)
ox 0x

Fra
o, g (1
e Y, , _
W+Ey7 = 31 (¢, 40|)T

The boundary conditions are:

01’(_—{'%5)7):0 ¢z(i00,)’)=0
. s
Bro=0, Pio=0 @
3y dy
n a¢i
1) = =0
Om =0, ol )+ S

The interface conditions are:

T. T,
8:(0, y) = — 6,(0, 1,
100, y) T, 2 y)+T0

T, T
¢1(0,)’)=F¢2(0,y)+"z—1
0
a0; T, d6, 0o, T 0¢2
—2(0,y) = —=—2(0,y), —(0, 0, y).
ax(,y) To ox (0, y) ax( V)= Té ox ——=(0,y)

Since we are interested in high temperature levels
but not large temperature differences, the last term of
equation set (1) may be linearized.

The results for the mirror and black surfaces are
readily obtainable from the foregoing equations by
considering the limits A = 0 and 1 = 1/2, respectively.

SOLUTION
Reduction to a differential eigenvalue problem

In general, an exact solution of the present formu-
lation is not possible. However, an approximate
scheme, the Galerkin method, has proven to be success-
ful in earlier works, and is employed here for the pur-
pose of the solution. The method has been discussed
by Finlayson [16] and Finlayson and Scriven [17]. The
variables # and ¢ are expanded in complete sets of
orthogonal functions which satisfy the boundary con-
ditions. The coefficients of these functions are chosen
by forcing the errors resulting from the substitution of
these functions into the original differential equations
to be orthogonal to the trial functions in the domain
of interest.

Due to the physical symmetry of the problem, the
solution is composed of even functions only. In view
of this, the boundary conditions, equation set (2),
suggest that,

N
0= Z Apix)cos i,y, where 3)
2n—1)n/2,
and

b=

n

B,f{x)cos p,y, {4

MZ ||

]
-

tFor a detail development of this equation see reference

[15].

is a proper orthogonal set to represent the temperature
0 and radiative internal energy ¢. The p,’s are given by
the roots of the transcendental equation,

tan p = 3it/nu. (3)

For the special case of mirror boundaries, u, = nr.

Substituting equations (3) and (4) into the set (1) and
orthogonalizing with respect to cos 4,y and cos u,y
over the interval 0 < y < 1, we obtain an infinite set of
simultaneous second order linear ordinary differential
equations with A,;(x) and B,(x) as the only unknowns
for both the regions x < 0 and x > 0:

pes, S gy 4y O3 Ay 7 0By =0

— e .=

dx m Anj 2dx? p N ©
Fom 32 = G B+ 120%Qum Ay = 0.

The above system may be reduced to a set of 4N first

order differential equations with 4N unknowns. To

obtain the first order set, we define:
d4

nj dBn
C,.,-=d—xj and D= dxj'

The new system may be written as:

—Hy Ay 5 dC, _0
2 dx
dD,
nm X] nm Bnj+ 12‘52QnmAnj =0
7
b i 5 =0 "
nm dX nm>~nj —
dB,;
6nm—ﬂ—6ann' = 0
dx I
Or, the general form may be expressed as:
p, 3 %m _p x (8)
nm dX - nmmimj -

The explicit forms of the matrices S, Hums Qums Fum»
Gums Py Enm and X,,; are given in [ 15].

The differential eigenvalue problem is solved by find-
ing the latent roots of the matrix P,,'E,,. Eigenvalues
for a given value of N are obtained by transforming
the matrix P,,'E,, to upper almost triangular form
(Hessenberg form) and then employing the QR algor-
ithm [18]. Subroutines for both these methods exist
in the scientific subroutine package (IBM) system. The
accuracy of the eigenvalue subroutine is tested by com-
puting the difference between the trace (the sum of the
diagonals of P;,'E,,) and the sum of the eigenvalues.
In all cases, this difference was found to be less than
0-01 per cent. When an N-term approximation is used
in the expansion (8), P, E,.., has 4N real eigenvalues.
Furthermore, P,,'E,, has an infinite number of posi-
tive and negative roots. The negative eigenvalues
o-j(j=1,2,3,...,2N) are admissible in the region
x>0 and the positive eigenvalues o.;(j=1,2,3,

., 2N) in the region x < 0, because of the boundary
conditions on § and ¢ at x = +o0. Eigenvalues for
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each domain are obtained from equation (7) provided
2, is replaced by 2, .

After the eigenvalues are determined. the constants
A,; and B,; are solved for the governing equations
and interface conditions. Note that the solution in the
x-direction is of exponential form; therefore we have

Ayi(x) = ayexplo;x) 9)
and

B,j(x) = b,jexplo;x). (10

Substituting these expressions into the set (6) we get:

Omm - 0t
~ P8y Ot~ Hop i + ? OF g+ > OQunby=0

, ; (1)
ano'fb"j_Gnmbnj+ 127 Qnmanj =0
or,
a,,jAA,,,,, +b,uBB,,m

(12a)
(lnjCC"m+b"jDD"m =0
where A Ay, BBy, CCpy and DD, are given in [15].

The system (12a) forms a set of homogeneous
algebraic equations which give a unique set of ,; and
b,; for every eigenvalue o;, with a non-trivial solution
existing only if the determinant of the coefficient matrix
vanishes. Therefore, the constants a,; and b,; are deter-
minable only in terms of a;;. Hence, the 4N eigenvalues
give 8N? constants, a,; and b,; to be completely deter-
mined using the conditions given at the interface x = 0.
The eigenvalues o_; give the constants, a_,; and b_,;,
for the region x > 0 and the eigenvalues o ; give the
constants a. ,; and b, ,; for the region x < 0.

The connecting procedure at the interface of the two
domains is carried out by using the assumed ex-
pressions for 8 and ¢. The first interface condition is
the equality of temperature and is given by

0,(0, y) = 0,(0 )Tw—i—Tw I
1, y) =020 ) TO To -

Substituting the expressions for §; and 0,, equation (3),
gives:

T 2N N

_—_—Z Y Ata,cos i,y
Tw j=1n=1

TO 4N N
+— 3 Y Afacos i,y

Tw} 2n+1 n=1

(13)

To simplify equation (13), we multiply by cos 4,y and
integrate over the interval 0 < y < 1. This orthogonal-
ization process gives:

n 2N 4N
2<%—1>( /1:) nz A*a,,,+§3j ;ﬂ Atay (14)
where,
n=123..,N
Likewise, the temperature gradient,
@l ©,y) = T, %(O
T, ox

at the interface gives:

2! '[0 4N
=-Y (rjA}"a,,j+F Y ojAfa,. (19
j=1 wj=2n+t

Also, equating the radiative internal energy,

4 T4
¢1(0,y) = ¢(O\)+~%~1
() TO
and its derivative,
o T, 0¢,
: 0 0,
Ex(”‘) T““ = O

at the interface give:
41— TO 441,810 Hn
%) 2uk +sin 2y,

2N 4T 4N
--3 Afbnj+<—TE—3> Y Arby,
i=1 w

ji=2n+1

(16)
and,

2N 4T 4N
0=y ajA}*b,,j—<T0~—3) ¥

j=1 j=2n+1

Equations (14)~(17) may be arranged to give,

- Z A*am Z

w j=2N+1

Afa,; = GG,

2N 4N

T
- Y dray+ = Y

j=1 T, j=iN+1

2N 47T,
— Y Afb,+ <_£ -

j=1 Tw

O'jA;ﬁa"jz 0
(18)

4N
3) S, Afb,; =FF,

Jj=2N+1

2N 4T0 A 4N
- Z O-jA;anj+<T_3> Z ajA}“b,,jz()

j=1 J=2N+1

where FF, and GG, are given in [15]. For mirror
boundaries, the right side of the third equation is zero.
This system gives a set of 4N algebraic, linear and
nonhomogeneousequationsin4N unknowns, (4N, A¥’s)
where the eigenvalues o_; give the constants A*; for
the region x >0 and the eigenvalues o.; give the
constants A% for the region x < 0.

Finally, the temperature distributions for x > 0 and
x < 0 are respectively:

0,=Y Y & *—(AFa,)cosi,y (19)

ji=1 n=1
and

4N N
Y e ¥ 4+ (AFa,;) cos A, y. (20)

j=2N+1 n=1

0, =

Likewise the radiative internal energies for x > 0 and
x < 0Oare respectively:

Z Z & ¥ — (AFby)cos i,y 21
j=1n=1
and
4N N
¢, = Z Z & T+ (AFby)cos p,y.  (22)

j=2N+1 n=1
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The heat transfer at the walls are given by the con-
duction at the wall and radiative flux at the wall.

_O0Tjoyly=1 —n c¢jyly=1

Ny =LYV Z0 0 SOV =
1 To 3,@1"[ 1 TO
T, T,

for explicit forms of (23) see [15].

23)

DISCUSSION OF RESULTS
Effect of axial radiation with mirror boundaries
The effect of 7 on centerline temperature is shown
in Fig. 2. The temperature profile for = 0 charac-

Effect of axial radiation with black boundaries

The effect of 2 on centerline temperature is given
in Fig. 3. This result shows that as this parameter is
decreased, axial radiation increases. Since decreasing
% means increasing both T and T, varying this
parameter implies a wall effect on axial radiation only.
Sparrow and Cess [ 7] define a conduction to radiation
parameter N that includes 7 the optical thickness. The
relation between this parameter and 2 is N = 2/1.
Therefore N exhibits a radiant gas property effect as
well as a radiant wall effect, whereas 2 only shows a
radiant wall effect.

Pe =10
x =10
08
T T
06
*
8¢
a4l
° 00
1-0
0-21- 0
10-0
| | | | I |
-0 -08 -06 -04 -02 0 02 04 06 o8 s
1/62

F1G. 2. The effect of optical thickness on centerline temperature for T/T,, = 1-2.

| /Gz

F1G. 3. The effect of Planck number on centerline temperature for T,/7,, = 1-2.

terizes the non-radiating case, and it agrees with results
given by Agrawal [19]. This result shows that as the
optical thickness is increased axial radiation dimin-
ishes. This is evident from the trend of the centerline
temperature gradient at the interface (1/GZ = 0) of the
two domains as t is increased. This result is consistent
with the so-called “radiation Peclet number” prediction
given by Sparrow and Cess [7]. With mirror bound-
aries, the wall temperature is redundant since they only
reflect and do not emit. Therefore, it is meaningless to
vary £ since it is independent of T and other radiant
effects except wall temperature. Changing n shows a
similar behavior as 7 and results are given in {15].

HMT Vol. 19. No. 2--C

The radiant wall effect that is shown in Fig. 3 is not
accomplished by increasing the ratio of Ty/T, but
instead by increasing the magnitude of both T, and
T,,. This is achieved by decreasing either 2, or 2, and
calculating the other since they are coupled through
the relation

2, = (T,/T.\#4.

It is well known that for low Peclet numbers on the
order of 1, axial conduction is significant. Adding axial
radiation, in this case, increases this significance. How-

+The quantity Tp/T, was fixed at a value of 1-2 for this
study.
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ever, it is of interest to increase Pe to a value where
axial conduction is negligible and investigate the axial
radiant effect. Figure 4 shows the effect of # on
centerline temperature for Pe = 10 and other condi-
tions the same as before. It is apparent from this resuit
that axial radiation is appreciable since the centerline
temperature for 1/Gz < 0 deviates farther from T; as
the effect of this parameter is increased.

CONCLUSIONS

It is observed that in the case of mirror boundaries,
axial radiation can be neglected even for small Peclet
numbers. In the case of black boundaries, axial radi-
ation is negligible only when radiation cffects are small.
For large Peclet numbers, it is observed that the
parameters 7, # and 2 control axial radiation. When
the parameters 7 and 5 are fixed quantities, the product

1-O]
Pe=10-0
T= 10
n= 10
&q P
*
8¢
0-20
0-50
-0
! | |
-0 -0-8 -06 -0-4 -0-2 06 08 1O

1/6z

F1G. 4. The effect of Planck number on centerline temperature for 7,/T,, = [-2.

n
* 06
8¢
04
Q-2
| | ] |
=10 -0-8 -0-6 -0-4 -02

/62
F1G. 5. The effect of non-centerline temperature for Ty/T, = 1-2.

Effect of ©

The effect of t on axial radiation is maximized for ©
equals approximately two. This result in general agrees
with that given by Viskanta [1]. However, the effect
of 7 is small when compared with the effect of 2.
See [15] for exact comparisons.

Effect of n
The effect of # on centerline temperature is shown

in Fig. 5. This result indicates that as # is increased
axial radiation increases. This is the same trend noted
when 2 was decreased except for the behavior of 8*
for 1/Gz > 0. Since 2 is fixed, this effect is only due to
gas properties and as expected show a similar trend to
that produced when Pe is decreased.

Pe# control axial radiation. An example is the special
case of the thin or thick gray gas. For small Peclet
numbers, both axial diffusion and radiation are im-
portant quantities, and the parameters t, 1, # and Pe
must be specified.
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L’EFFET DU RAYONNEMENT AXIAL DANS LE PROBLEME
DE GRAETZ EN AXES CARTESIENS

Résume— Le probléme du transfert de chaleur en écoulement laminaire entre deux plaques paralieles
infinies horizontales a été formulé afin de tenir compte de T'effet du rayonnement sur le fluide entrant,
le systéme de coordonnées est choisi sur le plan médian tel que les parois 4 y = +1 et x < 0 soient
maintenues 4 une température constante T, tandis que les parois @ y = +1 et x > 0 sont portées a une
température constante différente T,,. Les distributions de température dans les régions x <0 et x>0
sont obtenues dans le cas de frontiéres noires et dans le cas de miroirs. Elles ont été obtenues par une
résolution de 'équation d’énergie contenant des termes de rayonnement, couplée a 'équation du transfert
par rayonnement et en imposant des conditions de continuité sur la température, sur 'énergie interne de
rayonnement et sur leurs dérivées a la jonction x = 0. Un examen des paramétres est effectué¢ pour
étudier les effets thermiques de Pépaisseur optique, de I'état non gris et du nombre de Planck (rapport
de la conduction au rayonnement du corps noir} sur le fluide non diffusif, absorbant et émissif. Dans le
cas de frontiéres constituées de miroirs, on montre que le rayonnement axial est négligeable, méme aux
faibles nombres de Péclet, si le rayonnement est appréciable. Dans le cas de frontiéres noires, le rayonne-
ment axial est négligeable seulement lorsque les effets du rayonnement sont faibles et le nombre de
Péclet grand.

DER EINFLUSS AXIALER STRAHLUNG AUF DAS
RECHTWINKLIGE GRAETZ-PROBLEM

Zusammenfassung—Es wird der Wirmetibergang fiir laminare Strémung zwischen zwei unendlichen,
waagerechten, parallelen Platten untersucht unter Beriicksichtigung des Einflusses der Strahlung auf das
stromende Fluid. Das Koordinatensystem ist in der Mittelebene gewdhlt, so dall die Winde bei y = +1
und x < 0 auf der konstanten Temperatur T, sich befinden, wihrend die Winde bei y = + 1 und x>0
auf einer anderen konstanten Temperatur T, gehalten sind. Temperaturverteilungen werden fiir die
Bereiche x < 0 und x > O fiir spiegelnde und schwarze Grenzen erhalten. Dies wurde erreicht durch
Losung der Energiegleichung einschlieBlich eines Strablungsterms gekoppelt mit der Gleichung fir
Temperaturstrahlung und Anwendung der Kontinuitatsgleichungen auf die Temperatur und die durch
Strahlung iibertragene innere Energie und Beriicksichtigung der Ableitungen an der Stélle x = 0. Eine
Parameterstudie liefert die thermischen Einfliisse der optischen Dicke der Abweichung vom grauen
Strahler und der Planck—Zahl (Verhiltnis der Leitung zur Strahlung des schwarzen Kérpers) auf das
nichtstreuende, absorbierende und emittierende Fluid. Auch bei groBerem Strahlungsanteil erweist sich
fiir spiegelnde Grenzen die Axialstrahlung als vernachléssigbar bei kleinen Péclet-Zahlen. Fiir schwarze
Berandungen ist die Axialstrahlung nur dann vernachldssigbar, wenn die Strahlungseffekte klein sind
und die Péclet-Zahl groB ist.

YYET 3OOEKTA AKCHAJIBHOI'O M3JIVUEHHMA B 3ATJAYE I'POTUA
B AEKAPTOBbIX KOOPOAMHATAX

Amnorauus — PopMyIupyeTcs 3amada TemJIonepeHoca ¢ y4eToM »bdexta u3nyyeHus na Habera-
JOUWWH NOTOK MPU JTAMHHAPHOM TEYEHUHM MEXKIY ABYMS OECKOHEYHBIMH FOPH3OHTAILHBIMH Mapas-
JIENBHBIMH TIIACTHHAMM C KOOPAMHATHOM CHcTeMOH, BHIOpaHHOH B cepelMHe ILUIOCKOCTH TaKUM
obpaizom, 4To Ha CcTeHKax npu y= +1 U x < 0 noamepxuBaeTcs nocrosHHas Temueparypa 7o, B
TO BpeMs Kak npH y = -+1 W x>0 monmepxusacTcs paiMuHas DOCTOAHHAs Temneparypa T,.
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TNonyyeHo pacnpeneneHue Temnepatypbl Opd x-<0 U x >0 1is 3epKajbHbIX M YEPHbIX rPaHHILL
J1i1st 3TOrO, ypaBHEHHE IHEPTHH, BKTHOUYAIOLIEE YIEHbI H3Y4EHHs, PElUanoch COBMECTHO ¢ ypaBHe-
HHEM TNEPEHOCa H3TYYCHHUA TIPU YCIOBHAX HEPA3PLIBHOCTH HA TEMIIEPATYPY H BHYTPEHHIOIO JHEPTUIO
W3NYYEHUS U UX NPOM3BOAHBIX B TO4Ke x =-- 0. [TpuBoauTcst 0630p mapamMeTpoB MO MCCRENOBAHHIO
BJIMAHMS TEMNOBbIX 3Q@EKTOB ONTHYECKOH TOJILLUMHBI, IPONYCKaHUs W 4ucia [1nanka (oTHouweHue
NPOBOAWMOCTH K H3AYUYEHHIO YEPHOTO TE/1a) Ha HEPACCEHBAIOLYIO, HOIJIOIUAOLIYO H H3MYHAIOLLY O
KUAKOCTh, ECiiv W3nydyeHue 3HAYUTENBHO, TO NMOKA3aHO, YTO JUISl 3€PKabHbIX FPaHMULl AKCHAIBHOE
M3NyYeHHe TpeHebpeXxkumo Mano naxe nOpd Maibix udcnax [lexne. B cnyvae depusix rpaHui,
AKCHANBHOE M3JY4YEHHE NpeHeOpex MO Mano TORbKO Toraa, koraa 3dGheKTsl U3TyHeHHUA Maslbl, a
yucno [lekne Benunko.



