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Abstract-The problem of heat transfer for laminar flow between two infinite horizontal parallel plates 
with a coordinate system chosen at the middle plane such that the walls at y = + 1 and x < 0 are held 
at a constant temperature T, while the walls at y = + 1 and x > 0 are held at a different constant 
temperature T,, is formulated to take into account the effect of radiation on the incoming fluid. 
Temperature distributions for the regions x < 0 and x > 0 are obtained for mirror boundaries and black 
boundaries. This has been achieved by obtaining solutions to the energy equation, including radiative 
terms, coupled with the radiative transfer equation and by imposing continuity conditions on the 
temperature and the radiative internal energy and their derivatives at the junction x = 0. A parameter 
survey is made to study the thermal effects of optical thickness, nongrayness and Planck number (ratio 
of conduction to black body radiation) on the nonscattering, absorbing, and emitting fluid. For mirror 
boundaries, it is shown that axial radiation is negligible, even at low Peclet numbers, if radiation is 
appreciable. In the case of black boundaries, axial radiation is negligible only when radiation effects are 

small and the Peclet number is large. 

NOMENCLATURE 

specific heat; 

emissive power; 
Graetz number; 
intensity; 

thermal conductivity; 
half distance between plates; 
Nusselt number; 
Peclet number, = RePr ; 
Prandtl number, = PC/K; 

heat flux; 

Reynolds number, = s ; 
V 

temperature; 
velocity; 

maximum velocity; 
coordinate in horizontal direction; 
coordinate in vertical direction; 

coordinate perpendicular to paper; 
dimensionless coordinate, = x,/L; 

dimensionless coordinate, = yI/L; 

Planck number, Domain I = K/L/4uT$; 

Planck number, Domain II = K/L/4aT:. 

Greek symbols 

UP, Planck mean; 

UR, Rosseland mean ; 

am3 mean absorptivity, = (~l~c+)~!~ ; 
g, Stefan-Boltzmann constant; 

a”, eigenvalues ; 
4 emissivity; 

5, radiative internal energy; 

*Work was done under the supervision of Professor V. S. 
Arpaci of the Mechanical Engineering Department, Univer- 
sity of Michigan, Ann Arbor, Michigan. 

4 l/4(1/&- l/2); 

A n> (2n - 1)x/2; 

V> nongrayness parameter, = (ap/aR)1’2 ; 
‘5, optical thickness, = a,,, L; 

xt ratio of nongrayness to Planck number, 

= q/y; 

K absolute viscosity; 

$1, 

kinematic viscosity; 
dimensionless radiative internal energy 
Domain I = <,/4aTt- 1; 

4 2, dimensionless radiative internal energy 

Domain II = &/40T$ - 1; 
0 13 dimensionless temperature 

Domain I = Tl/TO - 1; 
9 2, dimensionless temperature 

Domain II = T2/Tw- 1; 

e*, dimensionless temperature 
(T-T,)/(T,-T,),i= 1,2. 

Subscripts 

b, black ; 
0, wall (x < 0); 

P? Planck ; 
r, Rosseland; 

w, wall (x > 0); 

1, Domain I (x < 0); 

2, Domain II (x > 0). 

Superscripts 

R, radiation. 

INTRODUCTION 

DURING the past decade, considerable attention was 
given to the problem of radiation effects on laminar 
flow inside tubes and between parallel plates. In review- 
ing the literature, the intention was not to give a detail 
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report on what has been done to date but rather to 
give attention only to those contributions that are 
directly related to the present work. 

Viskanta [I] was among the first to consider the 

effect of radiation on the well known Nusselt-Graetz 

problem. Neglecting entrance effects due to both radi- 
ation and conduction and considering Cartesian ge- 

ometry, Viskanta used an iterative procedure to solve 
the fully developed case. He considered the gray gas 
with black boundaries and the entire range of optical 
thickness. Assuming slug flow, Ei~rein [2, 31 extended 

the Graetz problem to include radiation for a gray gas 
and black boundaries for both parallel plates and 

tubes. He assumed the inlet gas temperature to be 
uniform and the gas absorptivity to be independent of 
temperature. To account for variation of absorption 
and emission in the gas, Einstein used distributed 

energy sources. In each study the integro-differential 
energy equation was replaced by a system of algebraic 
equations by using a zonal method given by Hottel 
and Cohen [4]. 

Assuming uniform inlet temperatures, Desoto [5] 

studied the radiative Graetz problem considering a 
nongray, nonisothermal gas with black boundaries in- 
cluding entrance effects due to radiation and convec- 

tion. His results included temperature distributions 
compared with the Graetz problem with no radiation. 
Desoto found that for CO* at about 2500°F radiation 
caused a drastic effect on the gas temperature. Also, 
the local heat flux at the wall of the tube was given. 
His solution technique was iterative in nature. First he 
would estimate the temperature distribution, calculate 

the heat flux, and then compute the temperature from 
the energy using finite difference approximations. A 
new radiative flux distribution was then computed 
along with a new temperature distribution. This pro- 
cedure was iterated until an acceptable result was 
obtained. 

Using Laplace transforms and a numerical iterative 
technique, Greif and McEligot [6] investigated the 
effect of one-dimensional thin gas radiation on the 
Cartesian Graetz problem with black boundaries. They 
were able to show the elect of the conduction to 

radiation parameter. Nt. on the local heat transfer at 
the wall. The transverse temperature distribution was 
given also as a function of this parameter. They found 
that for relatively small values of N, the temperature 
gradient at the wall approached zero which caused the 
local heat flux at the wall, due to conduction, to 
approach zero. 

The foregoing literature survey reveals that the effect 
of radiation on the general Graetz problem, parallel 
plates and tubes, has been treated in several aspects. 
However, none of the above investigators considered 
both qt. $ and radiant heat penetration out of the 
usual defined single domain. The aim of the present 
investigation is to consider both the terms 42 and y,” 
along with a two domain problem. These effects to- 
gether with mirror and black boundaries, Planck 

tThis parameter is defined by Sparrow and Cess [7] p. 258. 

number (ratio of conduction to black body radiation): 
and the entire range of optical thickness arc examined 
using the approximate differential technique which is 
considered next. 

FORMtiLATION 

Considering a radiating fluid flowing in plane 
poiseuille flow from left to right between infinite parallel 

plates as shown in Fig. 1. These plates have a tem- 
perature T, to the left of the origin and a temperature 
Tw to the right of it. 

TO Tw 

I L y’ot_ 
Xl 

TO 
rw 

FIG. I. Laminar flow between parallel plates. 

The major consideration in formulating this problem 
is to investigate the contribution of axial heat transfer 
by radiation. In order to investigate axial radiation it 

is necessary to consider a two domain problem and 
include the term 4,” in both the energy and transfer 
equations. This is accomplished by formulating the 
problem for both domains and using the natural 
boundary conditions of equality of temperature and 

temperature gradient at the interface. 
It is a well known fact that an exact treatment of 

radiative transfer in a fluid leads to a formulation in 

terms of integro-differential equations. Approximate 
theories have been developed which permit a formu- 
lation including only differential equations. As ex- 
plained by Sparrow and Cess [7], there are a number 
of ways these differential equations may be obtained. 
One way involves satisfying certain moments of the 

equations of transfer. while another proceeds by ex- 
panding the intensity 1 in a series of spherical har- 
monics. Using the moment method, Arpaci and Gozum 
[S] obtained a differential form of the transfer equation 
including both the terms qf and ~1:. They also formu- 
lated boundary conditions that included the color of 
boundaries and a weighted non-grayness of the gas. In 
the present work, this formulation is employed. 

The usual assumptions of constant fluid properties, 

negligible viscous dissipation and negligible radiative 
contributions to momentum are employed. The differ- 
ential approximation to radiation employing the 
Planck and Rosseland means in the form of (apc(R)1,‘2 
satisfies both the thin and thick gas limits and the 
trendwise behavior between these extremes is quali- 
tatively accurate.9 However. this approximation con- 

sistently predicts lower gas temperatures between these 
limits. Therefore, care must be taken in applying this 
approximation to gases such as CO. COP, HzO, SOZ, 

fThis parameter is discussed later in the text. 
$For further discussion, specific examples and details see 

references [8 141. 



The Cartesian Graetz problem 159 

the hydrocarbons and the high temperature oxygen, 
nitrogen, and hydrogen plasmas. 

With the above assumptions and relating black body 

radiation to temperature (Eb = crT4) the formulation 
of the problem in dimensionless form may be stated as: 

aei A2fli a*e, 
Pe(l-y2)~ = i)X2+~++iT(4i-40i) 

ax’ fy = 3t2(Cji-4ei)t. 
cly* 

The boundary conditions are : 

&(fCc,Y) = 0. bi(fco,Y)=O 

$(x. 0) = 0, F (x, 0) = 0 

8i(X, 1) = 0, C$i(x, 1)+&$X. 1) = 0. 
‘_ 

The interface conditions are: 

(1) 

(2) 

Z(o,Y) = ~~(o,y). 
0 

Z(0.y) = g$(o.y). 
0 

Since we are interested in high temperature levels 
but not large temperature differences, the last term of 
equation set (1) may be linearized. 

The results for the mirror and black surfaces are 
readily obtainable from the foregoing equations by 
considering the limits i = 0 and i = l/2, respectively. 

SOLUTION 

Reduction to a differential eigenualue problem 
In general, an exact solution of the present formu- 

lation is not possible. However, an approximate 
scheme, the Galerkin method, has proven to be success- 
ful in earlier works, and is employed here for the pur- 
pose of the solution. The method has been discussed 
by Finlayson [16] and Finlayson and &riven [ 171. The 
variables 0 and 4 are expanded in complete sets of 
orthogonal functions which satisfy the boundary con- 
ditions. The coefficients of these functions are chosen 
by forcing the errors resulting from the substitution of 
these functions into the original differential equations 
to be orthogonal to the trial functions in the domain 
of interest. 

Due to the physical symmetry of the problem, the 
solution is composed of even functions only. In view 
of this, the boundary conditions, equation set (2) 
suggest that, 

N 
Q = 1 Anj(x) cos i,y, where 

n=l (3) 

& = (2n- l)n/2, 

and (4) 

tFor a detail development of this equation see reference 

[151. 

is a proper orthogonal set to represent the temperature 
0 and radiative internal energy 4. The p,‘s are given by 

the roots of the transcendental equation, 

tan p = 3it/qp. (5) 

For the special case of mirror boundaries, p, = nn. 
Substituting equations (3) and (4) into the set (1) and 

orthogonalizing with respect to cosi.,Y and COS~,J 
over the interval 0 < y < 1, we obtain an infinite set of 

simultaneous second order linear ordinary differential 
equations with A,,j(x) and Baj(x) as the only unknowns 
for both the regions x c 0 and x > 0: 

d Anj 6, d2A, 9~ 
-PeS,,~-H""A"j+~+~Q"B"j=O 

1 
(6) 

FfVfZ 
d2B 
L-G,,B,+ 12r*Q, A, = 0. 
dx2 

The above system may be reduced to a set of 4N first 
order differential equations with 4N unknowns. To 
obtain the first order set, we define: 

The new system may be written as: 

-Pes~~-H~a,+~dC”‘+)lre_B,= 0 
2 dx :‘pl 

Fnm%-G”,B,+ 12t2Q”,Anj = 0 
I_\ 

6.,!$d,,C, = 0 

S,, 2 - a,,,,, D, = 0. 

Or, the general form may be expressed as : 

The explicit forms of the matrices S,,, H,,,,,, Qnmr F,,, 
G,,, P,,,,, , E,, and Xmj are given in [ 151. 

The differential eigenvalue problem is solved by find- 
ing the latent roots of the matrix P”;‘E,,,, . Eigenvalues 
for a given value of N are obtained by transforming 
the matrix P”;lE,,, to upper almost triangular form 
(Hessenberg form) and then employing the QR algor- 
ithm [18]. Subroutines for both these methods exist 
in the scientific subroutine package (IBM) system. The 
accuracy of the eigenvalue subroutine is tested by com- 
puting the difference between the trace (the sum of the 
diagonals of P,&‘E,,) and the sum of the eigenvalues. 
In all cases, this difference was found to be less than 
0.01 per cent. When an N-term approximation is used 
in the expansion (8) P”;‘E, has 4N real eigenvalues. 
Furthermore, P&‘E, has an infinite number of posi- 
tive and negative roots. The negative eigenvalues 
O-j(,i = l-2,3, . . . , 2N) are admissible in the region 
x > 0 and the positive eigenvalues U+j(j = 1, 2, 3, 
. ,2N) in the region x < 0, because of the boundary 

conditions on 0 and 4 at x = k 73. Eigenvalues for 



each domain are obtained from equation (7) provided 
.P, is replaced by SZ. 

After the eigenvalues are determined. the constants 
A, and B, are solved for the governing equations 

and interface conditions. Note that the solution in the 
x-direction is of exponential form; therefore we have 

Anj(s) = (l,jexp(rr,.y) (9) 

and 

Bnj(X) = hnj exp(ujx). (10) 

Substituting these expressions into the set (6) we get: 

- PeS,, ajud - H,,,, ui + + ~$a,,~ + $. Qm h, = 0 

Fn, afb”j - CR, b”j + 1 2r2Q,m U”j = 0 
(11) 

or, 

UnjAA,+bnjBB, = 0 

u”jCC”,+h,DD, = 0 
(12a) 

where AA,,, BB,, CC,,,,, and DD,, are given in [lo]. 

The system (12a) forms a set of homogeneous 

algebraic equations which give a unique set of Cl.j and 
b, for every eigenvalue oj, with a non-trivial solution 

existing only if the determinant of the coefficient matrix 
vanishes. Therefore, the constants anj and b, are deter- 

minable only in terms of alj. Hence, the 4N eigenvalues 
give 8N2 constants, a”j and b, to be completely deter- 
mined using the conditions given at the interface x = 0. 
The eigenvalues o-j give the constants, u_,~ and b_,, 

for the region x > 0 and the eigenvalues u+~ give the 
constants u+,~ and b,, for the region x < 0. 

The connecting procedure at the interface of the two 
domains is carried out by using the assumed ex- 
pressions for 8 and 4. The first interface condition is 

the equality of temperature and is given by 

Substituting the expressions for t?t and e2, equation (3) 

gives : 

+G ,=z t Aj*unjCOsiL”J. (13) 
“, 2n+1 “=I 

To simplify equation (13), we multiply by cos 1,~ and 
integrate over the interval 0 d y < 1. This orthogonal- 
ization process gives : 

4N 

!$ _ y A,+unj+; ,=I A,)u,,~ (14) 
n ?I=, W, 2nil 

where, 

n = 1, 2, 3, , N. 

Likewise, the temperature gradient, 

;; (0, y) = 1’ z (0, y), 
0 , 

at the interface gives: 

2 .v 4N 

0= - 2 ujA;unj+; ,=I crjAfanj. (15) 
j=I w, 2n+, 

Also, equating the radiative internal energy, 

Ih,(o.~)=~.~~(o,ii)+-~-l 

and its derivative. 

at the interface give: 

4 

and, 

j=f+I ajAi*bnj. (17) 

Equations (14)-( 17) may be arranged to give, 

2N 

-jzl A:a,+~,~j=~+,Afanj= GGn 

= 0 

(18) 
= FF, 

where FF, and GG, are given in [15]. For mirror 
boundaries, the right side of the third equation is zero. 
This system gives a set of 4N algebraic, linear and 
nonhomogeneousequationsin4N unknowns, (4N, Af’s) 

where the eigenvalues g-j give the constants A*_j for 
the region x > 0 and the eigenvalues ~‘+j give the 
constants ATj for the region x < 0. 

Finally, the temperature distributions for x > 0 and 

x < 0 are respectively : 
2N N 

@2 = 1 1 e” ~~ - (A~*U~)COS i,y (19) 
j=l n=l 

and 

4N N 

HI = 1 c e”+J-‘+(A,?unj)cosl,y. (20) 
j=2N+l n=L 

Likewise the radiative internal energies for x > 0 and 
x < 0 are respectively : 

2N N 

42 = 1 C e”~~“-(A~b”j)Cos/~~~ (21) 
j=1 n=l 

e” + J-= + (ATbnj)cos pL,y. (22) 
j=2N+l n=l 
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The heat transfer at the walls are given by the con- _Efict ofaxial radiation with black boundaries 

duction at the wall and radiative flux at the wall. The effect of 9 on centerline temperature is given 

Nu,= aT/aYIY = I I @J/MY = I 1 
in Fig. 3. This result shows that as this parameter is 

’ (+j 3%T pj 
(23) decreased, axial radiation increases. Since decreasing 

9 means increasing both To and T,, varying this 
parameter implies a wall effect on axial radiation only. 

for explicit forms of (23) see [15]. Sparrow and Cess [7] define a conduction to radiation 
parameter N that includes r the optical thickness. The 

DISCUSSION OF RESULTS relation between this parameter and B is N = g/r. 
Effect ofaxial radiation with mirror boundaries Therefore N exhibits a radiant gas property effect as 

The effect of T on centerline temperature is shown well as a radiant wall effect, whereas 9 

in Fig. 2. The temperature profile for z = 0 charac- radiant wall effect. 

-I 0 -0 8 -0 6 -0 4 -0 2 0 02 04 06 08 

I /Gz 

FIG. 2. The effect of optical thickness on centerline temperature for TO/Tw = 1.2. 

-I 0 -0 8 -06 -0 4 -0-2 0 0.2 04 06 08 

I /Gz 

FIG. 3. The effect of Planck number on centerline temperature for TO/Tw = 1.2. 

terizes the non-radiating case, and it agrees with results 

given by Agrawal [19]. This result shows that as the 
optical thickness is increased axial radiation dimin- 

ishes. This is evident from the trend of the centerline 

temperature gradient at the interface (l/GZ = 0) of the 
two domains as r is increased. This result is consistent 
with the so-called “radiation Peclet number” prediction 
given by Sparrow and Cess [7]. With mirror bound- 
aries, the wall temperature is redundant since they only 
reflect and do not emit. Therefore, it is meaningless to 
vary B since it is independent of r and other radiant 
effects except wall temperature. Changing q shows a 
similar behavior as T and results are given in [15]. 

only shows a 

The radiant wall effect that is shown in Fig. 3 is not 

accomplished by increasing the ratio of TO/T, but 
instead by increasing the magnitude of both TO and 

T,. This is achieved by decreasing either 8i or y2 and 
calculating the other since they are coupled through 
the relation 

.?7’z = (TO/TW)391t. 

It is well known that for low Peclet numbers on the 
order of 1, axial conduction is significant. Adding axial 
radiation, in this case, increases this significance. How- 

tThe quantity TO/T, was fixed at a value of 1.2 for this 
study. 

HMTVol. 19.No.2- C 
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ever, it is of interest to increase Pe to a value where 
axial conduction is negligible and investigate the axial 

radiant effect. Figure 4 shows the effect of :Y on 
centerline temperature for Pe = 10 and other condi- 
tions the same as before. It is apparent from this result 

that axial radiation is appreciable since the centerline 

temperature for l/Gz < 0 deviates farther from To as 
the effect of this parameter is increased. 

C. DAVIS 

C‘ONCLL’SIONS 

It is observed that in the case of mirror boundaries, 
axial radiation can be neglected even for small Peclet 
numbers. In the case of black boundaries, axial radi- 
ation is negligible only when radiation cKects are small. 
For large Peclet numbers, it is observed that the 

parameters T. rl and ./p control axial radiation. When 
the parameters T and 4 are fixed quantities, the product 

Pe = IO.0 
T= IO 

7); I-O 

FIG. 4. The effect of Planck number on centerline temperature for Ta:‘T, = 1.2 

I I I I 
-I 0 -0.8 -0 6 -0 4 -02 0 02 04 O-6 

I/G.? 

FIG. 5. The effect of non-centerline temperature for &iLC,. = 1.2. 

Effect of T 

The effect of T on axial radiation is maximized for 7 
equals approximately two. This result in general agrees 
with that given by Viskanta [l]. However, the effect 
of z is small when compared with the effect of 9. 
See [15] for exact comparisons. 

&ffecr of v 
The effect of 9 on centerline temperature is shown 

in Fig. 5. This result indicates that as n is increased 
axial radiation increases. This is the same trend noted 
when B was decreased except for the behavior of 0* 
for l/Gz > 0. Since B is fixed, this effect is only due to 
gas properties and as expected show a similar trend to 
that produced when Pe is decreased. 

Pep control axial radiation. An example is the special 
case of the thin or thick gray gas. For small Peclet 

numbers, both axial diffusion and radiation are im- 
portant quantities, and the parameters t, q, 9 and Pe 

must be specified. 
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L’EFFET DU RAYONNEMENT AXIAL DANS LE PROBLEME 
DE GRAETZ EN AXES CARTESfENS 

R&arm&-Le probleme du transfert de chaleur en ecoulement laminaire entre deux plaques paralleles 
infinies horizontales a ott formult afin de tenir compte de l’effet du rayonnement sur le fluide entrant, 
le systkme de coordonnees est choisi sur le plan median tel que les parois a )‘ = If: 1 et Y < 0 soient 
maintenues a une temperature constante To tandis que les parois h 4’ = + 1 et x > 0 sont port&es B une 
temperature constante differente T,. Les distributions de temperature dans les regions x <: 0 et x > 0 
sont obtenues dans le cas de frontitres noires et dans le cas de miroirs. Elles ont ete obtenues par une 
resolution de l’kquation d’knergie contenant des termes de rayonnement, couplee g l’equation du transfert 
par rayonnement et en imposant des conditions de continuity sur la temperature. sur l’energie interne de 
rayonnement et sur leurs derivees a la jonction s = 0. Un examen des parametres est effect& pour 
etudier les effets thermiques de l’epaisseur optique. de l’etat non gris et du nombre de Planck (rapport 
de la conduction au rayonnement du corps noir) sur le guide non diffusif. absorbant et Cmissif. Dans le 
cas de frontieres constituees de miroirs, on montre que le rayonnement axial est negligeable, meme aux 
faibles nombres de P&let, si le rayonnement est appreciable. Dans le cas de frontitres noires, le rayonne- 
ment axial est nigligeable seulement lorsque les effets du rayonnement sont faibles et le nombre de 

P&let grand. 

DER EINFLUSS AXIALER STRAHLUNG AUF DAS 
RECHTWINKLIGE GRAETZ-PROBLEM 

Zusammenfassung-Es wird der Warmetibergang fiir laminare Stromung zwischen zwei unendlichen, 
waagerechten, parallelen Platten untersucht unter Ber~~ksi~htigung des Einflusses der Strahlung auf das 
stromende Fluid. Das Koordinatensystem ist in der Mittelebene gewIhlt, so daB die Wande bei f = + 1 
und x s: 0 auf der konstanten Temperatur To sich befinden, w&rend die W&de bei y = + 1 und I > 0 
auf einer anderen konstanten Temperatur T, gehalten sind. Temperaturverteilungen werden fiir die 
Bereiche x < 0 und x > 0 fur spiegelnde und schwarze Grenzen erhalten. Dies wurde erreicht durch 
Losung der Energiegleichung einschliel3lich eines Strahlungsterms gekoppelt mit der Gleichung fur 
Temperaturstrahlung und Anwendung der Kontinuittitsgleichungen auf die Temperatur und die durch 
Strahlung iibertragene innere Energie und Beriicksichtigung der Ableitungen an der Stelle s = 0. Eine 
Parameterstudie iiefert die thermischen Einfltisse der optischen Dicke der Abwei~hun~ vom grauen 
Strahler und der Planck-Zahl (Verhaltnis der Leitung zur Strahlung des schwarzen Korpers) auf das 
nichtstreuende, absorbierende und emittierende Fluid. Auch bei graDerem Strahlungsanteil erweist sich 
fur spiegelnde Grenzen die Axialstrahlung als vernachlassigbar bei kleinen P&let-Zahlen. Fur schwarze 
Berandungen ist die Axialstrahlung nur dann vernachlassigbar, wenn die Strahlungseffekte klein sind 

und die P&let-Zahl grog ist. 

YYET 3@QtEKTA AKC~A~bHOrO ~~YqEH~~ B 3AAAYE I-P3Tl44 
B AEKAPTOBbIX KOOP~~HATAX 

AmioTanHI - @OpMyflHpyeTCn 3anaYa TenJTOnepeHOCa c yYeToM ‘&$eKTa rr3nyneHcrR Ha naBera- 
K)llIMfi ITOTOK npn naMnHapHOM Te’teHMH MeKay AByMa 6eCKOHeYWblMM rOp1130HTanbHblMn napan- 
JleJlbHblMH ITJlaCTHHaMH C KOOpAHHaTHOli CnCTeMO& Bbl6paHHOk B CepeANHe nJtOCKOCTM TaKIlM 
06pa3OM, ‘iT0 Ha CTeHKaX npU y = + 1 A X < 0 nOnnepxCnBaeTCe tTOCTORHHaR TeMnepaTypa To, B 
TO speiwn KaK npu y = It1 ri x>O nonneplitwaaeTcR pa3nmittas nocTomniaa TeMnepaTypa T,. 
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IIonyveHo paCnpeneneHue rmneparypb~ npu s-: 0 bf x:-.0 nn~ 3epKanbublx u nepublx rpaHuu. 

fl,lB 3TOr”, ypaBHeHue 3Hep~uu,BKniOY~lOUlee WleHbl u3nyYeHun, peWanOCb COBMeCTHO C ypaBHe- 

HueM ~epeHOc~u3ny~eHu~~~uyC~OBuBXHepa3~blBHOCTuHaTeM~epaTypyu BHyTpeHHK?M3HepTum 

M3nyYeHufl u MX rlpOu3BOLIHblX B TOYKC x' ~0. JIpu~onu~crr 0630~ napaMeTpoB no UcCnenoBaHum 

B,luIl,,uR Terl,,OBblX 3@+eKTOB OrlTu'ieCKOii TOJllWiHbl,rIpOrIyCKaHuR H YuCna n,laHKa (OTHOLLleHue 

~pOBoI(uMOcTM K u3nyqeHum qepHor0 Tena) ua Hepacceusamluym, nornoruammym M u3nyuamluyio 
xu,L,KOcTb. Ecnu u3ny',e"ue 3HaYuTe,lbMO, TO nOKa3aH0, YTO flJlSl3epKanbHblX rpaHuU aKCua,lbHOe 

mnyseHue npetfe6peHcMhlo Mano name npu Manblx wicnax FIeltne. B cnyqae YepHblx rpauuu, 

aKcuanbHoe u3nyYeHue rIpeHe6pe)KUMO Man0 TonbKo Torna, Korna w$+eKTbi u3nyveHm Manbi, a 

wcno FleKne i3emKo. 


